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Abstract

The wall-jet problem described in a previous paper in which the effects of suction through the
wall and the wall moving were allowed so as to still satisfy the momentum condition for the
wall jet is considered further. It is shown that, as well as the upper branch of solutions which
were obtained previously, there is a lower branch of solutions, all of which have a region of
reversed flow next to the wall.

1. Introduction

In a recent paper, [1], the authors considered a generalisation of the wall-jet problem originally
studied by Glauert [2,3], in which both blowing and suction through the wall and the wall
moving were allowed. It was assumed that each of these effects had the appropriate power-law
variation in x (x is the non-dimensional distance along the wall) for the similarity form,
obtained in [2], to be preserved. This required a transpiration velocity v,(x)= -(a/4)

-
3/4

and a wall velocity U,(x)= ix - 1/2, where a and 18 are constants. Then, with the stream
function p = x/ 4 f(*q), q = y/X3/4 (Y is the non-dimensional co-ordinate normal to the wall),
the resulting ordinary differential equation is

f "' + _ff + f' 2 = 0 (1)

with boundary conditions

f(O) = a (2a)

f'(O) = f1 (2b)

f'-O as - oo (2c)

together with the momentum condition

Jo (f-a)f' 2 d=1 (2d)

(primes denote differentiation with respect to ). Condition (2d) arises since the form of the
similarity solution is such as to make the quantity

Jo afly O( a ) 2 dy dy = constant,

with the value of this constant being fixed at the leading edge of the jet.
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In [1] it was shown that no solutions of equation (1) satisfying boundary conditions (2) exist
when:

(i) a0, =0,
(ii) /89= 0, a = 0,

(iii) a < 0, any/ ,

while for certain values of a and a solution was possible. These solutions were obtained by
solving the first-order equation

f ,= (a3 f'/ 2 f 2 ) G(f; a) (3)

where a2 =f(OO) with a being determined in terms of a through (2d), and determined in
terms of a and a by (2b).

In [1] the positive sign for the square root in (3) was taken throughout, giving just one
possible solution for each a > 0. However, allowing the negative sign also for the square root
enables a second branch of solutions to equation (1), satisfying (2), to be constructed, again for
each a > 0. These new solutions all have a region of reversed flow next to the wall (i.e. they give
rise to negative values for /). Both these branches of solution bifurcate out of Glauert's original
solution at a =8 = 0 in the (a, ) plane with a square-root singularity.

2. Existence of solutions

An examination of equation (3) shows that G(f; a) is defined only in f > 0 where it has two
branches, an upper branch in which the positive sign is taken for the square root and a lower
branch in which the negative sign is taken. Also G(f; a) has zeroes at f = 0 and f= a2 and a
sketch of G(f; a) is shown in Fig. 1. Due to the symmetry of G(f; a) we need only consider
a > 0 (there is no solution of (3) satisfying (2) for a = 0), and from [1] we have to restrict
attention to the case a > 0.

Using Fig. 1 we can see that, for a given value of a, there are exactly two solutions of
equation (3), one, which we will denote by f (; a, a), starting on the upper branch at f = a
and proceeding directly to f = a 2. The other solution, which we will denote by fL (; a, a),
starts on the lower branch again at f = a, proceeds on this lower branch to f = 0, then follows
the upper branch from f=0 to f= a2. Using condition (2b) in (3) we obtain for the
upper-branch solutions

lu =fJ'(; a, a) = (a 3 - a2 ) (4)

and for the lower-branch solutions

/L =fL(0; a, a)= - (a 3 + a2 ). (5)

The relation between a and a is determined by condition (2d). Consider first the upper-branch
solutions. From [1] we have that (2d) gives

a 8 _ 20 6+6 + ¢a
5/ 2 a3

_4 40 = 0,(6)
which can be written as(6)

which can be written as

(7)([ - I)'g([,) 40a -4=0 
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G (f, a)

Fig. 1. A sketch of G(f; a) as defined by (3) showing the upper-branch and lower-branch solutions from f = a.

where

= /vf and g(/) = tP + 3 4 + 43 + 39 t 2 + !/ + .

It is easy to show that (IL - 1)3 g(,) is a monotone increasing function of I in I > 0 and has
just one zero at IL = 1, and so is negative for 0 < IL < 1 and positive for it > 1. Hence for a given
value of a > 0, equation (7) has just one solution, ~ (a) say, with , (a) > 1. The correspond-
ing value of a, Oa(a) say, then satisfies the condition aU(a) 2 > a for all a > 0 (as is borne out
by the calculated values given in [1]). Also it is easy to deduce from the above that /zu(a) is a
monotone decreasing function of a with /L.(a)- (40)1 /8 a- 1/2 for small a and /tL(a) - 1 +
31/3a

-
4/3 for a large, so that

J vFa (1 + 31/ 3 a-4/3 + ... ), a large

() (40)/(1 + O(a)), a small(8)

with, from (5),

fl,(a) - (4)l/v + ... a l. (9)
a small.

Furthermore, since a,2 > a, we have that flu(a) > 0 for all a > 0.
Consider next the lower-branch solutions, fL(q; a, a). The equation for determining a in

terms of a becomes, from (2d),

(L - 1)3 g(/t) - 40a - 4 = 0 (10)

where g() = g() - (64/9),t 3, with a = /a and g(/±) as defined above.
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Fig. 2. Graphs of u( (a) and BLL(a) against a (note the different scales for Pf and fiL)

Again we can deduce that ( - 1)3 g(p) is a monotone increasing function of for IL > 0 and
has a single zero at /i = 1. Therefore equation (10) is invertible to give /z as a single-valued,
positive and monotone decreasing function of a, p/ = ptL(a) say. So for these lower-branch
solutions a = GL(a) is a positive, single-valued function of a. The behaviour of oL(a) for both a
small and as a - oo is the same as for a(a), given by (8), while the corresponding forms for
PiL(a) are, using (5)

iL() I - a2 + ... a large
AL(a) - 1(40)3 /8V + ... , a small.

Graphs of flu(a) and fiL(a) computed numerically from solutions of equations (7) and (10)
respectively are shown in Fig. 2, where, in line with (9) and (11), we can see that both branches
bifurcate out of Glauert's solution at a = fi = 0 with a square-root singularity.
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We have shown that for each a > 0 there is just one upper-branch solution f(T), and using
(3) we can show that fa is a monotone increasing function of . Also, for each a > 0 there is
just one lower-branch solution fL(q). Moreover fL decreases monotonically for in the range
0 < il < %0(a) where

qo = , 6du (12)
3 u1/2 + U2'

so that

T(a) = l2 [iog a2 0) + 23 (tan'( - )].

At = 170(a) both fL and fL are zero, thereafter fL increases monotonically with 77.

3. Numerical solutions

Graphs of the upper-branch solutions for various a have been given in [1] and need not be
repeated here. The lower-branch solutions were obtained by integrating equation (1) numeri-
cally by a Runge-Kutta method starting at T = 0. To do this for a given value of a = f(0), we
need to know both f'(0) and f"(0). Now f'(O) = PL(a), where f1 L is given by (5) with OL(a) as
calculated by solving equation (10). (This can be done easily by Newton iteration or by
prescribing a value for a and evaluating the corresponding value for a from (10)). To calculate
f "(0) we differentiate (3) once with respect to 17 to get

r3+ 4a( )L (13)

L

r/
Fig. 3. Graphs of fL(/) against ir for various a.
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= 5245

= 3023

a = 1005

6

Fig. 4. Graphs of fL(;1) against for various a.

which can be calculated directly. Then with f(O), f'(O) and f"(O) known, equation (1) can be
integrated numerically by a direct marching method. Graphs of fL and fL for various a are
shown in Figs. 3 and 4 respectively. These graphs clearly show the region of reversed flow next
to the wall.
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